Меню

До появления компьютеров оно использовалось как основное средство хранения информации

Краткая история хранения данных, часть №1 — от перфокарт до пузырьковой памяти

Сегодня мы мало задумываемся о том, какой путь прошли накопители, чтобы дойти до современных SSD или облачных дисков. Мы легко ворочаем десятки гигабайт информации за раз, даже не задумываясь о том, что пару десятков лет назад такой объем имели жесткие диски, а нужное для ее хранения количество дискет вы бы не смогли унести даже в рюкзаке. Поэтому давайте посмотрим, с чего начиналось «компьютерное» хранение данных, и к чему мы пришли почти за три столетия его развития.

Перфокарты были первой попыткой хранения данных на машинном языке. Они использовались для передачи информации оборудованию еще до разработки компьютеров: перфорированные отверстия изначально представляли собой «последовательность инструкций» для ткацких станков, с помощью которых можно было управлять узорами на тканях. Первую такую перфокарту разработал Базиль Бушон еще в 1725 году — больше чем за 200 лет до первого компьютера в привычном нам понимании.

В 1837 году, чуть более 100 лет спустя, Чарльз Бэббидж предложил свою идею аналитической машины, примитивного калькулятора с движущимися частями, который мог использовать перфокарты для получения инструкций. Однако лишь полстолетия спустя Герман Холлерит доработал эту идею и воплотил в жизнь первый табулятор — электромеханическую машину, способную как «читать» задачу с перфокарт, так и выдавать результаты на бумажную ленту или специальные бланки. Его машина использовалась для переписи населения США 1890 года, а в 1896 году Холлерит основал компанию Tabulation Machine.

Видов перфокарт было множество, и самый известный — так называемый «формат IBM», введенный в 1928 году: каждая перфокарта имела размеры 187 х 83 мм и толщину в 0.178 мм, и на ней умещалось 12 строк и 80 колонок. Много это или мало? Для хранения 1 ГБ информации при помощи таких карт вам потребуется небольшая комната, а их вес превысит 22 тонны.

И если кто-то думает, что перфокарты давно уже нигде не используется, то это не так: еще в 2011 году в США существовала компания Cardamation, поставлявшая перфокарты и устройства для работы с ними. В основном она продавала их правительственным организациям, где древние по современным меркам компьютеры и даже табуляторы — совсем не редкость.

Нет, речь идет не о тех лентяях, зарабатывающих деньги, играя на Twitch и показывая это всему миру. В данном случае streamer можно перевести на русский язык как ленточный накопитель, использующий магнитную ленту для записи и хранения информации.

В 1927 году немецкий инженер Фриц Пфлеймер, после ряда экспериментов с различными материалами, пришел к напылению порошка оксида железа на тонкую бумагу и его фиксации с помощью клея. В 1928 году он демонстрирует свой прибор для магнитной записи с бумажной лентой публике. Бумажная лента хорошо намагничивалась и размагничивалась, с нее было просто считывать информацию и её можно было обрезать и склеивать. Однако перфокарты стоили дешевле, а их меньшие объемы хранения информации пока что всех устраивали.

Принцип ее работы был очень прост и заключается в том, что ферромагнетики (например, тоже железо) намагничиваются, будучи внесенными в магнитное поле, и сохраняют это состояние после его отключения. На этом и строилось хранение информации: записывающая головка была по сути сердечником, генерирующим определенное магнитное поле при подаче на него тока. Магнитное поле, в свою очередь, намагничивало металлические частицы на пленке в двух направлениях (и, возможно, на нескольких дорожках). Для считывания использовалась другая головка, в которой при проходе над намагниченными областями возникал ток, и его можно было интерпретировать как поток данных. Очевидный минус у такой технологии был только один — записанные кассеты по понятным причинам боялись магнитов.

Магнитная лента была впервые использована для записи компьютерных данных в 1951 году в компании Eckert-Mauchly Computer Corporation на ЭВМ UNIVAC I. В качестве носителя использовалась тонкая полоска металла шириной 12.65 мм, состоящая из никелированной бронзы (называемая Vicalloy). Плотность записи была 198 микрометров на символ в восемь дорожек. Из-за своего удобства и большой емкости магнитные ленты использовались вплоть до массового распространения жестких дисков, серьезно потеснив перфокарты.

Что касается ПК, то основным носителем информации в 70-ых и 80-ых годах были достаточно дешевые и доступные аудиокассеты: конечно, это было не очень удобно, но цена тут решала все. Аудиомагнитофон не был такой уж редкостью, а объема компакт-кассеты в 50-60 Мб с лихвой хватало для пользовательской информации в те года. В 90-ых в пользовательских компьютерах стали массово появляться жесткие диски, да и дискеты со схожим принципом работы оказались существенно удобнее, так что магнитные ленты полностью ушли из привычных нам устройств.

Но не все о них забыли: к примеру, IBM продолжает развивать стандарт 3592, где картриджи могут иметь объем в 4 ТБ. Разумеется, в обычных серверах вы их не встретите — сказывается низкая скорость, которая в самом лучшем случае не превышает 140 МБ/c. Но для долгосрочного хранения архивной информации лучших накопителей просто не найти: к примеру, ленточная библиотека (автоматизированное хранилище с тысячами магнитных лент) на 6.6 петабайт потребует менее 700 тысяч долларов для поддержания работы в течение 5 лет, а вот традиционные жесткие диски и периферия к ним — более 14 млн.

К середине XX века стало понятно, что компьютерам требуется быстрая память, в которой можно, например, хранить промежуточным расчеты или же инструкции — так и родилось первое оперативное запоминающее устройство, или ОЗУ.

Произошло это в 1948 году, когда профессор Фредрик Уильямс и его коллеги разработали запоминающую электронно-лучевую трубку, также известную, как трубка Уильямса. Принцип ее работы был не очень прост и базировался на том, что люминофорный экран (схожий с экраном старых телевизоров) мог некоторое время хранить заряд при попадании на него электронного пучка. С другой стороны экрана стояло считывающее устройство, которое после прочитывания информации «обнуляло» экран. С учетом того, что люминофор хранил данные всего доли секунды, их приходилось постоянно перезаписывать — получился прадедушка современной энергозависимой DRAM-памяти.

К слову, объем первой лучевой трубки, использующейся в Манчестерской малой экспериментальной машине, составлял целых 1024 бит, или 32 32-битных слова.

Однако достаточно быстро стало понятно, что трубка Уильямса низкоэффективна и дорога, и чтобы хранить на ней хотя бы с десяток килобайт информации, ее размеры должны быть на уровне экранов ЭЛТ-телевизоров конца 80-ых — очевидно, что технологиями 40-ых годов создать такое было нереально.

Поэтому, когда в 1949 году Ван Ань и Во Вайдун, молодые сотрудники Гарвардского университета, изобрели сдвиговый регистр на магнитных сердечниках, его быстро стали использовать в производстве ферритовой памяти (причем настолько быстро, что к середине 50-ых, когда Ван получил на него патент, такую память активно использовала IBM, и последней пришлось выкупить патент за 500 тысяч долларов).

Принцип работы такой памяти был куда проще, чем у вакуумных трубок. Все базировалось на том, что ферритовое кольцо (сердечник) можно намагнитить, и направление намагниченности может хранить один бит. Через каждое такое кольцо проходит четыре провода: X и Y — провода возбуждения, провод запрета Z под углом в 45 градусов к ним и провод считывания S под углом в 90 градусов. Для считывания значения бита на провода возбуждения подается импульс тока определенным образом, после чего смотрят на ток на проводе считывания: если поменялась намагниченность ферритового кольца, то на нем возникнет индукционный ток. Если это произошло, значит, была записана 1. Если ток отсутствует, то есть намагниченность не поменялась и, значит, ее не было изначально — был записан 0. Очевидно, для записи на провода возбуждения подается такой же импульс тока, но в обратном направлении — происходит намагничивание и запись логической единицы. И если нужно, чтобы сердечник хранил в себе логический ноль, то на провод запрета также подается ток в другом направлении. В итоге это приводит к тому, что суммы токов оказывается недостаточно, чтобы изменить намагниченность сердечника.

Все это выглядит, конечно, сложно, но на практике собиралось максимально просто: по сути эту память. ткали женщины, сидя за микроскопами и пропуская через кольца проводки. В итоге ее стоимость была куда дешевле, чем у вакуумных трубок, из-за чего она была популярной вплоть до середины 70-ых.

В 1953 году Массачусетский университет разработал первый компьютер, использующий эту технологию, получивший название Whirlwind. Его память могла хранить 2048 16-битных слов, то есть ее объем составлял целых 4 КБ — прогресс в 40 раз по сравнению с первой трубкой Вильямса пятилетней на тот момент давности.

Первый жесткий диск появился за 15 лет до изобретения дискеты, в 1956 году. Дедушкой современных HDD стал IBM 305 RAMAC — Random Access Method of Accounting and Control, или Метод случайного доступа к учету и контролю. По своим размерам он был сопоставим с парочкой шкафов, весил 970 кг и имел 50 алюминиевых, покрытых ферромагнетиком, пластин, каждая из которых была 61 см в диаметре и могла хранить аж 100 КБ — то есть общая емкость накопителя была 5 МБ.

Скорость вращения дисков была гигантской по тем временам — 1200 оборотов в минуту, это позволяло найти нужную информацию на одной пластинке за 600 мс, а средняя скорость передачи информации была на уровне 9 байт в секунду. Серьезных проблем у такого HDD было две: во-первых, пластин 50, а считывающая головка — одна. Так что если вам нужно перейти от первой пластине к, например, 20-ой, время задержки исчислялось уже секундами. Вторая проблема заключалась в том, что считывающая головка касалась поверхности пластины, что приводило к достаточно быстрому их износу.

Тем не менее, такие устройства были нарасхват: несмотря на стоимость в 10 000 долларов за штуку, IBM умудрилась продать около 1000 экземпляров, и это в 50-ых годах! Причина такого ажиотажа была вполне понятной: один такой HDD заменял 64 000 перфокарт и был быстрее накопителей на магнитных лентах.

Разумеется, за 60 лет изменилось многое: жесткие диски стали гораздо миниатюрнее, считывающие головки теперь не касаются пластин, а парят над ними. Сами короба стали герметичными или наполненные гелием для ускорения работы, емкости пластин выросли в миллионы раз и достигают терабайтов, ну и конечно же давно уже никто не использует одну головку для всех пластин. А вот скорости вращения выросли несильно, всего лишь в разы — сказывается предел прочности используемых материалов.

Также она известна как память на цилиндрических магнитных доменах, и имела достаточно короткую, но яркую историю. Изобрел ее инженер Bell Labs Эндрю Бобек в 1967 году, а уже в середине 90-ых ее полностью вытеснила флеш-память. Плюс пузырьковой памяти по сравнению с магнитными лентами — компактные размеры, позволяющие использовать ее в небольших портативных устройствах, а также высокая плотность записи информации: так, «коробочка» площадью в пару квадратных сантиметров, выпущенная Texas Instuments в 1977 году, имела емкость 92304 бита, или чуть больше 11 КБ.

А вот принцип ее действия был достаточно сложен. Суть была в том, что некоторые материалы, такие как, например, гадолиниево-галлиевый гранат, могут намагничиваться только в одном направлении, и если вдоль него расположить магнитное поле, то намагниченные области соберутся в пузырьки — отсюда и название памяти.

Как это можно использовать? Взять непроводящую ток стеклянную подложку, напылить на нее металлические «буквы» T или V, и покрыть все сверху гадолиниево-галлиевым гранатом. Теперь, прикладывая к такому «чипу» магнитное поле в двух перпендикулярных направлениях, можно «гонять» получившиеся пузырьки по «буквам», тем самым получая хранилище информации.

Плюс такой памяти — она энергонезависима, то есть конфигурация пузырьков вне магнитного поля меняться не будет. Минус — чтобы получить доступ к информации на определенной «букве»-бите, нужно будет прогнать все пузырьки по кругу и понять, в каком же положении был пузырек на нужной «букве». Процесс этот был, очевидно, достаточно долгим. Конечно, в дальнейшем придумали многотрековую память, где можно было «считывать» пузырьки быстрее, но все еще появление Flash RAM за считанные годы похоронила такую интересную с физической точки зрения идею.

В следующей статье мы перейдем к более современным носителям информации, таким как дискеты, DRAM и оптические диски, ну а под конец поговорим про облачные хранилища и SSD.

Источник

Как менялись носители информации для компьютеров

В наш век супербыстрых SSD и терабайтных жёстких дисков пользователи ПК уже давно позабыли, что такое нехватка свободного места. Разумеется, так было не всегда. Совершите небольшое путешествие назад во времени, чтобы увидеть эволюцию носителей информации для компьютеров.

Помогите развитию проекта, поделитесь статьей в социальных сетях, через кнопки справа ->

Магнитная лента

Если отбросить перфокарты, то самым старым методом записи информации для компьютера станет магнитная лента, появившаяся в 1951 году. Первые магнитные ленты применяли в суперкомпьютерах, но потом они появились и в домах в виде аудиокассет и VHS. В том или ином виде, как носитель информации, магнитная лента дожила до конца двадцатого века. Если на первые магнитные ленты удавалось записывать лишь крохи информации, сравнимые с перфокартами, то впоследствии вместимость данных выросла в тысячи раз.

Жёсткий диск

Ещё один старый метод записи, но актуальный и по сей день. Жёсткие диски, спрятанные в корпус, появились в 1956 году. Стандартный 3.5’ HDD вмещает терабайты данных, в то время как один из первых жёстких дисков весил под тонну и вмещал жалкие 3.5Мб информации — сегодня на него не поместилась бы и одна гифка из социальных сетей. Возможности носителя ещё не исчерпаны. Некоторые производители умудряются создавать HDD с возможностью записи до 10Тб информации.

Дискета

Первый массовый носитель появился в 1971. Если домашний компьютер ещё мог работать без встроенного жёсткого диска, то без дискеты он превращался в обычную домашнюю мебель. Пластиковый квадратик вмещал в себя небольшой магнитный диск с вместимостью 1,44Мб. И хоть дискеты безнадёжно устарели, пиктограмма с их изображением до сих пор прочно ассоциируется с кнопкой « Cохранить ».

Оптический диск

Оптические диски, появившиеся в 1982 году, тоже развиваются. Хотя большинство людей уже не пользуются дисками на ПК, фильмы и видеоигры до сих пор записывают на диски формата Blu-ray. Первый диск производства Sony вмещал около 600Мб информации, а сегодня Blu-ray такого же размера вмещает уже 111Гб данных, куда может поместиться фильм высокой чёткости в формате 3Д.

Твердотельный накопитель

Флэшки и SSD — самые аудиальные на сегодняшний день носители. Быстрый и недорогие, они ещё долго будут привычными атрибутами любого ПК.

Облако

Следующий этап хранения информации, когда данные будут храниться на удалённых серверах. Конечно, при хранении этих данных будут использовать вполне себе привычные жёсткие диски, но пользователям уже совершенно не будет до этого дела. Это поможет сократить размеры устройств. Вспомните, какими стали компактными ноутбуки, лишившиеся дисковых приводов и объемных HDD.

Понравилась статья? Ставьте палец вверх и подписывайтесь на канал Дзен

Источник

lktalks

«Software developers have neutralized the astounding performance of modern computer hardware by adding layer upon layer of overelaborate [software] abstractions.» Bjarne Stroustrup, Creator of C++

среда, сентября 12, 2007

Носители информации: краткая история в картинках

Наша цивилизация немыслима в её сегодняшнем состоянии без носителей информации. Наша память ненадёжна, поэтому достаточно давно человечество придумало записывать мысли во всех видах.

Носитель информации — это любое устройство предназначенное для записи и хранения информации.

Примерами носителей могут быть и бумага, или USB-Flash память, также как и глиняная табличка или человеческая ДНК.

Информация тоже бывает разная — это и текст и звук и видео. История носителей информации начинается довольно давно .

Камни и стены пещер — палеолит (до 40 до 10 тыс. лет до нашей эры)

Первыми носителями информации были, по всей видимости, стены пещер. Наскальные изображения и петроглифы (от греч. petros — камень и glyphe — резьба) изображали животных, охоту и бытовые сцены. На самом деле точно неизвестно, предназначались ли наскальные рисунки для передачи информации, служили простым украшением, совмещали эти функции или вообще нужны были для чего то ещё. Тем не менее это самые старые носители информации, известные сейчас.

Глиняные таблички — 7-й век до нашей эры

На глиняных табличках писали пока глина была сырой, а затем обжигали в печи.

Именно глиняные таблички составили основы первых в истории библиотек, наиболее известной из которых является библиотека Ашшурбанипала в Ниневии (7 век), которая насчитывала около 30 тысяч клинописных табличек.

Восковые таблички — это деревянные таблички, внутренняя сторона которых покрывалась цветным воском для нанесения надписей острым предметом (стилосом). Использовались в древнем Риме.

Папирус — 3000 лет до нашей эры

Папирус — писчий материал получивший распространение в Египте и во всем Средиземноморье, для изготовления которого использовалось растение семейства осоковых.

Писали на нем при помощи специального пера.

Пергамент — 2 век до нашей веры

Пергамент постепенно вытеснял папирус. Название материала происходит от города Пергам, где стали впервые изготавливать этот материал. Пергамент представляет собой недубленую выделанную кожу животных — овечью, телячью или козью.


Популярности пергамента способствовало то, что на нём (в отличие от папируса) есть возможность смыть текст, написанный растворимыми в воде чернилами (см. палимпсест) и нанести новый. Кроме того, на пергаменте можно писать с обоих сторон листа

Бумага — 1-й или начало 2 века нашей эры

Предполагается что бумага была изобретена в Китае в конце первого или начале второго века нашей эры.

Широкое распространение получила благодаря арабам только в 8-9 веках.

Береста — широкое распространение с 12 века

Берестяные грамоты использовались в Новогороде и были открыты учеными в 1951 году.


Тексты берестяных писем выдавливались с помощью специального инструмента — стилоса, изготовленного из железа, бронзы или кости.

Перфокарты — появились в 1804 году, запатентованы в 1884 году

Появление перфокарт в основном связывается с именем Германа Холлерита, который применил их для проведения переписи населения в США в 1890 году. Тем не менее первые перфокарты были созданы и использованы существенно раньше. Жозеф Мари Жаккард использовал их для того чтобы задавать рисунок ткани для своего ткацкого станка ещё в 1804 году.

Перфоленты — 1846 год

Перфолента впервые появилась в 1846 году и использовалась для того, чтобы посылать телеграммы

Магнитная лента — 50-е годы

В 1952 году магнитная лента была использована для хранения, записи и считывания информации в компьютере IBM System 701.


Далее магнитная лента получила огромное признание и распространённость в форме компакт-кассет.

Магнитные диски — 50-е годы

Магнитный диск был изобретен в компании IBM в начале 50-х годов.

Гибкий диск — 1969 год

Первый, так называемый, гибкий диск был впервые представлен в 1969 году.

Жесткий диск — настоящее время

Вот мы и добрались до современности.
Жесткий диск изобретен в 1956 году, но продолжает использоваться и постоянно совершенствоваться.

Compact Disk , DVD — настоящее время



На самом деле CD И DVD это очень близкие технологии, отличающиеся не столько типом носителя, сколько технологией записи

Flash — настоящее время

Естественно здесь перечислены далеко не все придуманные и использованные человечеством носители информации. Часть видов носителей опущена специально (CD-R, Blue Ray, магнитные барабаны, лампы), а часть конечно просто забыта. Во всех ошибках или неправильных описаниях, виноват конечно же я,был бы благодарен за любые дополнения и уточнения.

Благодарности

Источник



8. До появления компьютера она использовалась как основное средство

8. До появления компьютера она использовалась как основное средство хранения информации. 3. 2. К. И. 1. О. Н. П. Р. Ф. 8. А. З. О. 6. Б. Л. О. К. 4. М. О. Н. И. Т. О. Р. Н. Я. Н. М. Ы. Ш. Ь. 5. 7. К. Л. А. В. И. А. Т. У. Р. А. А. Г. Ь. Ц. А. И. Я. 10.

Слайд 10 из презентации «Кроссворд по информатике»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Кроссворд по информатике.ppt» можно в zip-архиве размером 616 КБ.

«Путешествия на компьютере» — Правильный ответ: Всемирная компьютерная сеть Интернет. Правильный ответ: Наскальные росписи. Правильный ответ: Парик дыбом. Правильный ответ: глаза, уши, язык, нос, кожа. Назовите основную единицу измерения информации. Для чего служит клавиша «Caps Lock»? Правильный ответ: Для переключения режима ввода прописных и строчных букв.

«Игры для школьников» — Спортивные игры. Не слишком много «игроманов» среди подростков старше 16 лет. Адвентюрные игры. Анализ компьютерных игр в арсенале школьников г. Покачи показал: Игры-имитаторы. Ролевые компьютерные игры. Негативное влияние компьютерных игр: Степень влияния связана со степенью увлеченности и степенью использования компьютерных игр.

«Игра на знание» — Профессиональный фотоаппарат. Хранение информации. Устройство, для ввода звуковой информации. Скороговорка. Сочинить стихотворение. Названия четырех компьютерных терминов. Объектив. Устройство для вывода на печать больших изображений. Определи фотосъемку. Памятник в Екатеринбурге. Человек 21 века. Мультипликация.

«Брейн-ринг по информатике» — Сколько цветов содержит палитра. Брейн-ринг по информатике и математике. Что будет выведено на экран после выполнения фрагмента программы. Язык программирования Паскаль. Разрежьте куб на три одинаковых пирамиды. Мультимедиа. Алгоритм. 45 кроликов. Устройство. Четное место. Какая цифра в математике была введена последней.

«Самый умный» — В каком формате графические файлы сохраняются для передачи изображений для по сети ? Число 14263 может быть записано в пятеричной системе счисления. Что является основным элементом структуры табличной базы данных? — 4432. Как называется объединение двух или большего числа изображений в одно ? Как называется наука о законах и формах мышления? а) Логистика б) Логопедия в) Логарифмика г) Логика.

«Игровые технологии на уроках информатики» — Игровые технологии на уроках информатики. Целесообразность использования игровой технологии. Кот в мешке. Состоявшиеся в профессии. Информация. Актуальность применения игровых методов. Цифровые образовательные ресурсы. Результативность. Возрастные способности учащихся. Мир. Методическая система. Урок.

Источник