Меню

Какая часть анализатора воспринимает раздражение

5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха

Анализатор — функциональная система, состоящая из:

— рецептора,

— чувствительного проводящего пути

— соответствующей зоны коры, куда проецируется данный вид чувствительности.

Анализ и синтез полученной информации осуществляются в строго определенном участке — зоне коры больших полушарий.

По особенностям клеточного состава и строения кору больших полушарий разделяют на ряд участков, называемых корковыми полями. Функции отдельных участков коры неодинаковы. Каждому рецепторному аппарату на периферии соответствует область в коре — корковое ядро анализатора.

Важнейшие зоны коры следующие:

Двигательная зона расположена в переднецентральной и заднецентральной областях коры (передней центральной извилине впереди центральной борозды лобной доли).

Чувствительная зона (зона кожно-мышечной чувствительности расположена позади центральной борозды, в задней центральной извилине теменной доли). Наибольшую площадь занимает корковое представительство рецепторов кисти и большого пальца руки, голосового аппарата и лица, наименьшую — представительство туловища, бедра и голени.

Зрительная зона сосредоточена в затылочной доле коры. В нее поступают импульсы от сетчатки глаза, она осуществляет различение зрительных раздражений.

Слуховая зона расположена в верхней височной извилине височной доли.

Обонятельная и вкусовая зоны — в переднем отделе (на внутренней поверхности) височной доли каждого полушария.

В нашем сознании деятельность анализаторов отражает внешний материальный мир. Это дает возможность приспосабливаться к условиям среды путем изменения поведения.

Деятельность коры головного мозга человека и высших животных определена И.П. Павловым как высшая нервная деятельность, представляющая собой условно-рефлекторную функцию коры головного мозга.

Анализаторы – совокупность нервных образований, обеспечивающих осознание и оценку, действующих на организм, раздражителей. Анализатор состоит из воспринимающих раздражение рецепторов, проводящей части и центральной части – определенной области коры головного мозга, где формируются ощущения.

Зрительный анализатор обеспечивает получение зрительной информации из окружающей среды и состоит из трех частей:

периферической – глаз,

проводниковой – зрительного нерва

центральной – подкорковой и зрительной зоны коры головного мозга.

Глаз состоит из глазного яблока и вспомогательного аппарата, к которому относятся веки, ресницы, слезные железы и мышцы глазного яблока.

Глазное яблоко расположено в глазнице и имеет шаровидную форму и 3 оболочки :

фиброзную, задний отдел которой образован непрозрачной белочной оболочкой (склерой),

сосудистую

сетчатую

Часть сосудистой оболочки, снабженная пигментами, называется радужной оболочкой.

В центре радужной оболочки находится зрачок, который может изменять диаметр своего отверстия за счет сокращения глазных мышц.

Задняя часть сетчатки воспринимает световые раздражения. Передняя ее часть – слепая и не содержит светочувствительных элементов. Светочувствительными элементами сетчатки являются:

палочки (обеспечивают зрение в сумерках и темноте)

колбочки (рецепторы цветового зрения, работающие при высокой освещенности).

Колбочки расположены ближе к центру сетчатки (желтое пятно), а палочки концентрируются на ее периферии. Место выхода зрительного нерва называется слепым пятном.

Полость глазного яблока заполнена стекловидным телом.

Хрусталик имеет форму двояковыпуклой линзы. Он способен изменять свою кривизну при сокращениях ресничной мышцы. При рассматривании близких предметов хрусталик сжимается, при рассматривании отдаленных – расширяется. Такая способность хрусталика называется аккомодацией. Между роговицей и радужкой находится передняя камера глаза, между радужкой и хрусталиком – задняя камера. Обе камеры заполнены прозрачной жидкостью. Лучи света, отражаясь от предметов, проходят через роговицу, влажные камеры, хрусталик, стекловидное тело и, благодаря преломлению в хрусталике, попадают на желтое пятно сетчатки – место наилучшего видения. При этом возникает действительное, обратное, уменьшенное изображение предмета.

От сетчатки по зрительному нерву импульсы поступают в центральную часть анализатора – зрительную зону коры мозга, расположенную в затылочной доле. В коре информация, полученная от рецепторов сетчатки, перерабатывается и человек воспринимает естественное отражение объекта.

Нормальное зрительное восприятие обусловлено:

– достаточным световым потоком;

– фокусированием изображения на сетчатке (фокусирование перед сетчаткой означает близорукость, а за сетчаткой – дальнозоркость);

– осуществлением аккомодационного рефлекса.

Важнейшим показателем зрения является его острота, т.е. предельная способность глаза различать мелкие объекты.

Аккомодация приспособление глаза к видению различно удаленных предметов. При аккомодации сокращаются мышцы, которые изменяют кривизну хрусталика. При постоянной избыточной кривизне хрусталика световые лучи преломляются перед сетчаткой и в результате возникает близорукость. Если же кривизна хрусталика недостаточна, то световые лучи фокусируются за сетчаткой и возникает дальнозоркость. Близорукость развивается при увеличенной продольной оси глаза. Параллельные лучи, идущие от далеких предметов, собираются (фокусируются) впереди сетчатки, на которую попадают расходящиеся лучи и в результате получается расплывчатое изображение. При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, уменьшающими преломление лучей настолько, что изображение предметов возникает на сетчатке. Дальнозоркость наблюдается при укороченной оси глазного яблока. Изображение фокусируется позади сетчатки. Для исправления зрения требуются двояковыпуклые стекла. Старческая дальнозоркость развивается обычно после 40 лет, когда хрусталик теряет эластичность, твердеет и утрачивает способность менять кривизну, что мешает четко видеть на близком расстоянии. Глаз утрачивает способность к ясному видению разноудаленных предметов.

Орган слуха и равновесия.

Слуховой анализатор обеспечивает восприятие звуковой информации и ее обработку в центральных отделах коры головного мозга.

Периферическую часть анализатора образуют: внутренне ухо и слуховой нерв.

Центральная часть образована подкорковыми центрами среднего и промежуточного мозга и височной зоной коры.

Ухо – парный орган, состоящий из:

Наружного уха – включает ушную раковину, наружный слуховой проход и барабанную перепонку.

Среднего уха – состоит из барабанной полости, цепочки слуховых косточек и слуховой (евстахиевой) трубы. Слуховая труба связывает барабанную полость с полостью носоглотки. Это обеспечивает выравнивание давления по обеим сторонам барабанной перепонки. Слуховые косточки – молоточек, наковальня и стремечко связывают барабанную перепонку с перепонкой овального окна, ведущего в улитку. Среднее ухо обеспечивает передачу звуковых волн из среды с низкой плотностью (воздух) в среду с высокой плотностью (эндолимфу), в которой находятся рецепторные клетки внутреннего уха.

Внутреннего уха – расположено в толще височной кости и состоит из костного и расположенного в нем перепончатого лабиринта. Пространство между ними заполнено перилимфой, а полость перепончатого лабиринта – эндолимфой. В костном лабиринте различают три отдела – преддверие, улитку и полукружные каналы. К органу слуха относится улитка – спиральный канал в 2,5 оборота. Полость улитки разделена перепончатой основной мембраной, состоящей из волоконец разной длины. На основной мембране находятся рецепторные волосковые клетки. Колебания барабанной перепонки передаются слуховым косточкам. Они усиливают эти колебания почти в 50 раз и через овальное окошко передаются в жидкость улитки, где воспринимаются волоконцами основной мембраны. Рецепторные клетки улитки воспринимают раздражение, поступающее от волоконец и по слуховому нерву передают его в височную зону коры головного мозга. Ухо человека воспринимает звуки частотой от 16 до 20 000 Гц.

Орган равновесия или вестибулярный аппарат образован двумя мешочками , заполненными жидкостью, и тремя полукружными каналами. Рецепторные волосковые клетки расположены на дне и внутренней стороне мешочков. К ним примыкает мембрана с кристаллами – отолитами, содержащими ионы кальция. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. В основаниях каналов находятся волосковые клетки. Рецепторы отолитового аппарата реагируют на ускорение или замедление прямолинейного движения. Рецепторы полукружных каналов раздражаются при изменениях вращательных движений. Импульсы от вестибулярного аппарата по вестибулярному нерву поступают в ЦНС. Сюда же поступают импульсы от рецепторов мышц, сухожилий, подошв. Функционально вестибулярный аппарат связан с мозжечком, отвечающим за координацию движений, ориентацию человека в пространстве.

Вкусовой анализатор состоит из рецепторов, расположенных во вкусовых почках языка, нерва, проводящего импульс в центральный отдел анализатора, который находится на внутренних поверхностях височной и лобной долей.

Обонятельный анализатор представлен обонятельными рецепторами, находящимися в слизистой оболочке носа. По обонятельному нерву сигнал от рецепторов поступает в обонятельную зону коры головного мозга, находящуюся рядом со вкусовой зоной.

Кожный анализатор состоит из рецепторов, воспринимающих давление, боль, температуру, прикосновение, проводящих путей и зоны кожной чувствительности, расположенной в задней центральной извилине.

Тематические задания

1) воспринимает и перерабатывает информацию

2) проводит сигнал от рецептора в кору полушарий

3) только воспринимает информацию

4) только передает информацию по рефлекторной дуге

Источник

Какая часть анализатора воспринимает раздражение

Органами чувств, или анализаторами, называются приборы, посредством которых нервная система получает раздражения от внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений.

Показания органов чувств являются источниками представлений об окружающем нас мире. «Иначе, как через ощущения, мы ни о каких формах вещества и ни о каких формах движения ничего узнать не можем. » <Ленин В. И. Поли. собр. соч., т. 18, с. 320). Поэтому В. И. Ленин считал физиологию органов чувств одной из наук, лежащих в основе построения диалектико-материалистической теории познания.

Процесс чувственного познания совершается у человека по шести каналам: осязание, слух, зрение, вкус, обоняние, земное тяготение. Шесть органов чувств дают человеку многообразную информацию об окружающем объективном мире, которая отражается в сознании в виде субъективных образов — ощущений, восприятий и представлений памяти.

Живая протоплазма обладает раздражимостью и способностью отвечать на раздражение. В процессе филогенеза эта способность особенно развивается у специализированных клеток покровного эпителия под влиянием внешних раздражений и клеток кишечного эпителия под влиянием раздражения пищей. Специализированные клетки эпителия уже у кишечнополостных оказываются связанными с нервной системой. В некоторых участках тела, например на щупальцах, в области рта, специализированные клетки, обладающие повышенной возбудимостью, образуют скопления, из которых возникают простейшие органы чувств. В дальнейшем в зависимости от положения этих клеток происходит их специализация по отношению к раздражителям. Так, клетки ротовой области специализируются к восприятию химических раздражений (обоняние, вкус), клетки на выступающих частях тела — к восприятию механических раздражений (осязание) и т. д.

Развитие органов чувств обусловлено значением их для приспособления к условиям существования. Например, собака тонко воспринимает запах ничтожных концентраций органических кислот, выделяемых телом животных (запах следов), и плохо разбирается в запахе растений, которые не имеют для нее биологического значения.

Возрастание тонкости анализа внешнего мира обусловлено не только усложнением строения и функции органов чувств, но прежде всего усложнением нервной системы. Особенное значение для анализа внешнего мира приобретает развитие головного мозга (особенно его коры), отчего Ф. Энгельс называет органы чувств «орудиями мозга». Возникающие в силу тех или иных раздражений нервные возбуждения воспринимаются нами в форме различных ощущений. Как учит ленинская теория отражения, ощущение — это отражение в сознании человека предметов и явлений внешнего мира в результате их воздействия на органы чувств. Так, например, световая энергия, действуя на сетчатку глаза, вызывает нервные импульсы, которые, передаваясь по нервной системе, вызывают в нашем сознании зрительные ощущения. «. Ощущение. есть превращение энергии внешнего раздражения в факт сознания» (Ленин В. И. Пол. собр. соч., т. 18, с. 46).

Для возникновения ощущений необходимы: приборы, воспринимающие раздражение, нервы, по которым передается это раздражение, и мозг, где оно превращается в факт сознания. Весь этот аппарат, необходимый для возникновения ощущения, И. П. Павлов назвал анализатором (см. также «Морфологические основы динамической локализации функций. »). «Анализатор — это такой прибор, который имеет своей задачей разлагать сложность внешнего мира на отдельные элементы» <Павлов И. П. Лекции по физиологии, 1952, с. 445).

Источник



АНАЛИЗАТОРЫ

АНАЛИЗАТОРЫ — образования центральной и периферической нервной системы, осуществляющие восприятие и анализ информации о явлениях, происходящих как в окружающей организм среде, так и внутри самого организма. Термин введен в физиологическую науку И. П. Павловым. Учение об анализаторах пришло на смену идеализму и агностицизму, господствовавшим в физиологии органов чувств. Первоначально физиология органов чувств развивалась как ветвь соответствующих разделов физики (оптики и акустики) и благодаря усилиям Р. Декарта, Г. Гельмгольца и другим накопила многие факты, характеризующие физические свойства органов зрения и слуха.

Учение Павлова об анализаторах заложило основы естественнонаучного материалистического понимания природы и механизмов ощущений, процессов обучения и поведения. В соответствии с классификацией Павлова все анализаторы делятся на две группы: внешние и внутренние. ализаторыАн, осуществляющие анализ и синтез явлений окружающей среды, именуются внешними, или экстероцептивными (см. Экстероцепция). К ним относятся зрительный, слуховой, обонятельный, тактильный и другие. Анализаторы, осуществляющие анализ явлений, происходящих внутри организма, именуются внутренними, или интероцептивными (см. Интероцепция). Они дают информацию о состоянии желудочно-кишечного тракта, сердечно-сосудистой системы, легких и других внутренних органов. Одним из основных внутренних анализаторов является двигательный анализатор (см.). Он информирует мозг о состоянии мышечно-суставного аппарата. Его рецепторы (см. Проприоцепторы) имеют сложное строение и размещены в мышцах, сухожилиях и суставах. О том, что мышечная система является не только исполнительным моторным аппаратом, но и своеобразным органом чувств, было известно еще в начале 19 веке. Об этом с полной определенностью писал Белл (С. Bell, 1826) в книге «Нейромоторное кольцо». Впоследствии И. М. Сеченов (1863) показал, что «темному мышечному чувству» принадлежит важная роль в механизмах регуляции движений. Промежуточное положение между внешними и внутренними анализаторами занимает вестибулярный анализатор. Он находится внутри организма (внутреннее ухо), но возбуждается внешними факторами (ускорение и замедление вращательных и прямолинейных движений).

Каждый анализатор состоит из периферического (рецепторного) отдела, проводниковой части и коркового отдела. Периферический отдел анализатора представляет собой специализированные нервные окончания — рецепторы (см.), преобразующие определенные виды энергии (световую, звуковую, тепловую) в процесс нервного возбуждения. Благодаря специализации рецепторов осуществляется первый анализ внешних раздражителей — разложение целого на части, различение характера и качества сигналов. При этом все виды внешней энергии (свет, звук, тепло и холод, химические и механические воздействия и др.), трансформируясь в нервный процесс, поступают в мозг в виде однородных сигналов. Однако, несмотря на это, мозг точно дифференцирует информационное значение этих сигналов. Экспериментальные данные Эдриана (Е. D. Adrian, 1931), Гранита (R. Granit, 1957), Раштона (W. A. H. Rushton, 1961), Барлоу (Н. В. Barlow, 1961), Хартлайна (H. Hartline, 1961) и другие позволяют заключить, что это обусловливается тем, что сигналы, возникающие в рецепторной части анализатора, подвергаются кодированию. Существенное значение в механизмах кодирования информации приобретает частота и число импульсов, распространяющихся по афферентным нервам. Поскольку в каждом малом отрезке времени нерв то передает, то не передает импульсы, допускается, что передача информации осуществляется по двоичному коду (импульс—пауза). Буллок (Т. H. Bullock, 1969) считает, что, помимо импульсно-кодовой связи, передача информации между нейронами осуществляется и по неимпульсному типу, то есть благодаря специфическим электротоническим связям. Однако в системе анализатороа импульсно-кодовый тип передачи информации является основным.

В механизмах декодирования информации существенное значение приобретают особенности организации и функционирования проводниковых частей анализаторов и их корковых проекций. Проводниковая часть анализатора представлена не только различными ядрами таламуса и их проекциями к соответствующим областям коры мозга, но и такими образованиями, как ретикулярная формация [Моруцци, Мегун (G. Moruzzi, H. W. Magoun), 1949], структуры лимбической системы [Наута (V. Nauta), 1963] и мозжечок [Снайдер (R. S. Snider), 1950]. Наличие этих связей и функциональные особенности ретикулярной формации и мозжечка позволяют отнести их к структурным элементам внешних и внутренних анализаторов.

Тонкими электрофизиологическими исследованиями [Амассян (V. Amassian), 1950; Маунткасл (V. В. Моuntcastle), 1964; Р. А. Дуринян, 1965, и другие] установлено, что принцип экстенсивной (расширяющейся) проекции афферентных систем по мере их восхождения к высшим структурам мозга является общим для всех уровней центральной нервной системы. Наиболее ярко это выражено в таламо-кортикальных проекциях. Установлено, что афферентный сигнал, пришедший даже по одному волокну, передается множеству нейронов в специфических, ассоциативных и неспецифических ядрах таламуса, а они в свою очередь переключают каждый импульс на еще большее количество корковых нейронов. В коре головного мозга, где происходит высший анализ и синтез поступившей информации, каждый анализатор имеет определенную локализацию. Так, зрительный анализатор расположен преимущественно в затылочной области, двигательный — в теменной, слуховой — в височной области коры больших полушарий и так далее. Работы Эдриана, Вулси (С. N. Woolsey, 1943), Пенфилда (W. Penfield, 1954) и другие позволили установить, что некоторые анализаторы имеют несколько проекционных областей, расположенных в различных частях коры головного мозга, и что можно говорить о двойственном представительстве в коре головного мозга по крайней мере соматического, слухового, зрительного и висцерального анализатора.

В корковых отделах анализаторов имеются нейроны, реагирующие только на одно сенсорное раздражение. Это, как правило, специфические проекционные нейроны. Рядом с ними находятся песпецифические нервные клетки, реагирующие на различные сенсорные раздражители, то есть обладающие мультисенсорной конвергенцией (см. Кора головного мозга). Таких нейронов особенно много в ассоциативной области коры головного мозга. Благодаря конвергенции возбуждений на корковом нейроне возможно взаимодействие между многими анализаторами. На основе анализа сигналов, поступающих в мозг от внешних и внутренних рецепторов, осуществляется афферентный синтез (см.) адекватной информации с последующим формированием программы поведения, аппарата оценки результатов действия (см. Акцептор результатов действия).

Исследованиями последних лет показано, что деятельность анализаторов не исчерпывается только анализом внешней и внутренней информации, а включает и обратное влияние высших отделов на рецепторную и проводниковую части анализаторов. Чувствительность рецепторов (воспринимающей части анализаторов), а также функциональное состояние передаточных реле (проводниковая часть анализаторов) определяются нисходящими влияниями коры головного мозга, что позволяет организму из многих раздражителей активно отбирать наиболее адекватную в данный момент сенсорную информацию. Это выражается всматриванием, прислушиванием животного и так далее, что физиологически объясняется в первом случае снижением порога к зрительным раздражителям, а во втором — к слуховым раздражителям. Для изучения анализаторов применяются метод условных рефлексов, электрофизиологические и морфологические методы.

Библиография: Буллок Т. X. Язык нервных клеток, в кн.: Системная организация физиол. функций, под ред. В. В. Парина, с. 11, М., 1969; Гранит Р. Электрофизиологическое исследование рецепции, пер. с англ., М., 1957, библиогр.; Гусельников В. И. Электрофизиологическое исследование анализаторных систем в филогенезе позвоночных, М., 1965, библиогр.; Дуринян Р. А. Центральная структура афферентных систем, Л., 1965, библиогр.; Маунткасл В. Некоторые функциональные свойства соматической афферентной системы, в кн.: Теория связи в сенсорных системах, пер. с англ., под ред. Г. Д. Смирнова, с. 185, М., 1964, библиогр.; Могендович М. Р. и Темкин И. Б. Анализаторы и внутренние органы, М., 1971, библиогр.; Павлов И. П. Полное собрание трудов, т. 3, кн. 1 — 2, М.—Л., 1951.

Источник