Меню

Понятие сигнала как средство передачи информации

Сигналы как способ представления информации.

Сообщение является составной частью информации. Его можно рассматривать как форму представления (речь, текс, изображения, цифровые данные, графики, таблицы и т.п.) и как способ существования (передача сведений по линии связи). Для сообщения характерно наличие отправителя и получателя информации, а также используемая среда для её доставки в виде линии передач.

Сигнал представляет собой форму сообщения, преобразованного в целях его отображения передачи и регистрации. Сигнал переносит сообщение (информацию) на расстояние с использованием физической среды передач. Сигнал всегда является функций времени, даже если сообщение таковым не является. Например, неподвижное изображение, передаваемое по телевизионному каналу.

Данные следует рассматривать как зарегистрированные признаки неиспользуемой информации об объекте, которые хранятся в каком-либо месте. Когда же эти данные начинают использоваться для уменьшения неопределённости об объекте, они превращаются в информацию. Например, информацией принято считать поток компьютерных данных (компьютерный трафик), передаваемой по линии связи. Таким образом, информация является общим понятием, включающим в себя сообщения, сигналы и данные.

Классификация сигналов.

По непрерывности:

  1. континуальные (от лат. непрерывные) – сигналы обычно называют аналоговыми, поскольку они являются аналогом реального физического процесса. Аналоговые сигналы используются в аппаратуре, радиосвязи и телевидении.
  2. дискретные – относятся импульсные и цифровые сигналы. Особенность цифровых сигналов проявляется в том, что они, имея импульсную форму, несут в себе информацию, которую можно трактовать как некоторую последовательность двоичных цифр.

По использованию дополнительных периодических колебаний:

  1. первичные (исходные, немодулированные) непосредственно отражают передаваемые сообщения. Наиболее ярким примером таких сигналов являются электрические колебания в цепи микрофона, представляющие собой копию исходного звукового сигнала. На приёмном пункте исходное звуковое сообщение выделяется путём непосредственного воздействия сигнала на телефон (без каких-либо дополнительных преобразований). Примером цифрового сигнала может служить 7-битная последовательность, несущая в себе информацию о десятичных цифрах. При приёме такой последовательности на 7-сегментном индикаторе высвечивается десятичная цифра. Главная особенность первичных сигналов состоит в том, что каждому абоненту сети для передачи сообщения требуется индивидуальная линия связи.
  2. модулированные сигналы для транспортировки сообщения (первичного сигнала) используют дополнительно гармонические колебания или периодическую последовательность импульсов прямоугольной формы. Модуляцией называют процесс управления параметрами несущих колебаний с помощью первичного сигнала. При использовании гармонических колебаний в зависимости от управляющего параметра различают амплитудную, частотную и фазовую модуляцию. С помощью модулированных сигналов можно передавать несколько сообщений по одной линии связи, поэтому одной линией связи (средой передачи) могут пользоваться многие абоненты.

Основные понятия. Кодирование сигналов

Под кодом понимают символьное представление информации, а под кодированием– переход по определённому алгоритму от исходной формы символьного представления к новой форме. Декодирование – обратное преобразование.

Код можно характеризовать 3 основными параметрами:

  1. основанием, представляющим собой число m различных элементарных символов (или алфавит) из которых составляют код. При m=2 код называется двоичным или бинарным, при m=3 – троичным и т.д. В цифровой технике используется двоичный код, при котором один из элементарных символов является 1, другим – 0.
  2. значностью, которое определяется числом n символов алфавита, образующую кодовую комбинацию. Код называется равномерным, если в кодовых комбинациях используется постоянное число символов, и неравномерным в противном случае. Примером равномерного кода является код Бодо (n=5), неравномерного – код Морзе (разное n).
  3. Максимальным числом N возможных кодовых комбинаций, которое при заданных m и n выражается следующим соотношением: N=m n . Например, при m=2 и n=3 получим 8 кодовых комбинаций: 000 001 010 011 100 101 110 111.

Требования к кодированию.

К основным требованиям следует отнести:

1. уменьшение уровня низкочастотной (и постоянной) составляющей в спектре передаваемых сообщений.

2. обеспечение синхронизации между передатчиком и приёмником.

3. обнаружение и по возможности исправление битовых ошибок.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Источник

Сигнал

Эта статья или раздел нуждается в переработке.

Сигнал (в теории информации и связи) — материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала. Математическая модель представления сигнала, как функции времени, является основополагающей концепцией теоретической радиотехники, оказавшейся плодотворной как для анализа, так и для синтеза радиотехнических устройств и систем. В радиотехнике альтернативой сигналу, который несёт полезную информацию, является шум — обычно случайная функция времени, взаимодействующая (например, путём сложения) с сигналом и искажающая его. Основной задачей теоретической радиотехники является извлечение полезной информации из сигнала с обязательным учётом шума.

Понятие сигнал позволяет абстрагироваться от конкретной физической величины, например тока, напряжения, акустической волны и рассматривать вне физического контекста явления связанные кодированием информации и извлечением её из сигналов, которые обычно искажены шумами. В исследованиях сигнал часто представляется функцией времени, параметры которой могут нести нужную информацию. Способ записи этой функции, а также способ записи мешающих шумов называют математической моделью сигнала.

В связи с понятием сигнала формулируются такие базовые принципы кибернетики, как понятие о пропускной способности канала связи, разработанное Клодом Шенноном и об оптимальном приеме, разработанная В. А. Котельниковым.

Содержание

Классификация сигналов

По физической природе носителя информации:

  • электрические;
  • электромагнитные;
  • оптические;
  • акустические

По способу задания сигнала:

  • регулярные (детерминированные), заданные аналитической функцией;
  • нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей.

В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы:

  • непрерывные (аналоговые), описываемые непрерывной функцией;
  • дискретные, описываемые функцией отсчётов, взятых в определённые моменты времени;
  • квантованные по уровню;
  • дискретные сигналы, квантованные по уровню (цифровые).

Аналоговый сигнал (АС)

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС — гармонический сигнал — s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в компьютер и обработать его невозможно, так как на любом интервале времени он имеет бесконечное множество значений, а для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Дискретный сигнал

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчётами. Δt называется интервалом дискретизации.

Квантованный сигнал

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N-1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел, кодирующих эти уровни, связаны соотношением n ≥ log2(N).

Цифровой сигнал

Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Если записать эти целые числа в двоичной системе, получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.

Сигнал и событие

Событие (получение записки, наблюдение сигнальной ракеты, прием символа по телеграфу) является сигналом только в той системе отношений, в которой сообщение опознается значимым (например, в условиях боевых действий сигнальная ракета — событие, значимое только для того наблюдателя, которому оно адресовано). Очевидно, что сигнал, заданный аналитически, событием не является и не несет информацию, если функция сигнала и её параметры известны наблюдателю.

В технике сигнал всегда является событием. Другими словами, событие — изменение состояния любого компонента технической системы, опознаваемое логикой системы как значимое, является сигналом. Событие, неопознаваемое данной системой логических или технических отношений как значимое, сигналом не является.

Представление сигнала и спектр

Есть два способа представления сигнала в зависимости от области определения: временной и частотный. В первом случае сигнал представляется функцией времени характеризующей изменение его параметра.

Кроме привычного временного представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты. Действительно, любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала.

Для перехода к частотному способу представления используется преобразование Фурье:
.
Функция называется спектральной функцией или спектральной плотностью.
Поскольку спектральная функция является комплексной, то можно говорить о спектре амплитуд и спектре фаз . Физический смысл спектральной функции: сигнал представляется в виде суммы бесконечного ряда гармонических составляющих (синусоид) с амплитудами , непрерывно заполняющими интервал частот от 0 до , и начальными фазами .

Размерность спектральной функции есть размерность сигнала, умноженная на время.

Параметры сигналов

  • Мощность сигнала
  • Удельная энергия сигнала
  • Длительность сигнала T определяет интервал времени, в течение которого сигнал существует (отличен от нуля);
  • Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей:

  • Ширина спектра сигнала F — полоса частот, в пределах которой сосредоточена основная энергия сигнала;
  • База сигнала есть произведение длительности сигнала на ширину его спектра . Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: чем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной;
  • Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума;
  • Объём передаваемой информации характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазон

В радиотехнике

В радиотехнике основным элементом кодирования является модуляция сигнала. При этом обычно рассматривается близкий к гармоническому сигнал вида s(t)=A sin(2πft +φ), где амплитуда (A), частота (f) или фаза (φ), медленно (относительно скорости изменения синуса) изменяются в зависимости от передаваемой информации (амплитудная, частотная или фазовая модуляция).

Стохастические модели сигнала, предполагают случайным или сам сигнал или переносимую им информацию, стохастическая модель сигнала часто формулируется как уравнение, связывающее сигнал с шумом, который в данном случае имитирует множество возможных информационных сообщений и называется формирующим шумом, в отличие от мешающего шума наблюдения.

Обобщением скалярной модели сигнала являются например векторные модели сигналов, представляющие собой упорядоченные наборы отдельных скалярных функций, с определенной взаимосвязью компонентов вектора друг с другом. На практике векторная модель соответствует в частности одновременному приему сигнала несколькими приемниками с последующей совместной обработкой. Ещё одним расширением понятия сигнала является его обобщение на случай полей.

Источник



Сигнал (техника)

Сигнал (техника)

Сигнал — в теории информации и связи называется материальный носитель информации, используемый для передачи сообщений по системе связи. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением. На практике чаще всего используются электрические сигналы. При этом носителем информации является изменяющиеся во времени ток или напряжение в электрической цепи. Электрические сигналы легче обрабатывать, чем другие, они совместимы с широко распространёнными электронными устройствами.

Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала. Математическая модель представления сигнала, как функции времени, является основополагающей концепцией теоретической радиотехники, оказавшейся плодотворной как для анализа, так и для синтеза радиотехнических устройств и систем. В радиотехнике альтернативой сигналу, который несёт полезную информацию, является шум — обычно случайная функция времени, взаимодействующая (например, путем сложения) с сигналом и искажающая его. Основной задачей теоретической радиотехники является извлечение полезной информации из сигнала с обязательным учётом шума.

Содержание

Классификация сигналов

По физической природе носителя информации:

  • электрические,
  • электромагнитные,
  • оптические,
  • акустические
  • и др.;

По способу задания сигнала:

  • регулярные (детерминированные), заданные аналитической функцией;
  • нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей;

В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы.:

  • непрерывные (аналоговые), описываемые непрерывной функцией;
  • дискретные, описываемые функцией отсчетов, взятых в определенные моменты времени;
  • Квантованные по уровню;
  • Дискретные сигналы, квантованные по уровню (цифровые).

Аналоговый сигнал (АС)

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС — гармонический сигнал — s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в компьютер и обработать его невозможно, так как на любом интервале времени он имеет бесконечное множество значений, а для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Дискретный сигнал

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчётами. Δt называется интервалом дискретизации.

Квантованный сигнал

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N–1). Каждому уровню присваивается некоторое число. Отсчеты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичный чисел, кодирующих эти уровни, связаны соотношением n ≥ log2(N).

Цифровой сигнал

Для того чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Если записать эти целые числа в двоичной системе, получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.

Сигнал и событие

Событие (получение записки, наблюдение сигнальной ракеты, прием символа по телеграфу) является сигналом только в той системе отношений, в которой сообщение опознается значимым (например, в условиях боевых действий сигнальная ракета — событие, значимое только для того наблюдателя, которому оно адресовано). Очевидно, что сигнал, заданный аналитически, событием не является и не несет информацию, если функция сигнала и её параметры известны наблюдателю.

В технике сигнал всегда является событием. Другими словами, событие — изменение состояния любого компонента технической системы, опознаваемое логикой системы как значимое, является сигналом. Событие, неопознаваемое данной системой логических или технических отношений как значимое, сигналом не является.

Временной и частотный способы предстваления сигналов. Спектр сигнала.

Есть два способа представления сигнала в зависимости от области определения: временной и частотный. В первом случае сигнал представляется функцией времени s(t) характеризующей измение его параметра.

Кроме привычного временного представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты. Действительно, любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала.

Для перехода к частотному способу представления используется преобразование Фурье:
.
Функция S(ω) называется спектральной функцией или спектральной плотностью.
Поскольку спектральная функция S(ω) является комплексной, то можно говорить о спектре амплитуд | S(ω) | и спектре фаз φ(ω) = arg(S(ω)) . Физический смысл спектральной функции: сигнал s(t) представляется в виде суммы бесконечного ряда гармонических составляющих (синусоид) с амплитудами , непрерывно заполняющими интервал частот от 0 до , и начальными фазами φ(ω) .

Размерность спектральной функции есть размерность сигнала, умноженная на время.

Параметры сигналов

  • Мощность сигнала P = s 2 (t)
  • Удельная энергия сигнала
  • Длительность сигнала T оперделяет интервал времени, в течение которого сигнал существует (отличен от нуля);
  • Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей:

D = 10lgPmax / Pmin

  • Ширина спектра сигнала F — полоса частот, в пределах которой сосредоточена основная энергия сигнала[

    95%];

  • База сигнала есть произведение длительности сигнала на ширину его спектра B = TF . Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: тем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной;
  • Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума;
  • Объем сигнала характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазон

V = FTD

Источник